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Abstract

Shifts in the production frontier occur because of changes
in technology.  A model of how a firm learns to use the new
technology, or how it adapts from the first production frontier to
the second, is suggested.  Two different adaptation paths are
embodied in a translog cost function and its attendant cost share
equations.  The paths are the traditional linear time trend and a
learning curve.  The model is estimated using establishment level
data from a non-regulated industry that underwent a technological
shift in the time period covered by the data.  The learning curve
resulted in more plausible estimates of technical progress and
total factor productivity growth patterns.  A significant finding
is that, at the establishment level, all inputs appear to be
substitutes.
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1. Introduction

This paper addresses the problem of modelling how the

individual firm learns to exploit a new technology.  Technological

breakthroughs are often discrete events.  Frequently, the only way

to incorporate a new technology into the production process is to

scrap the technically obsolete equipment and methods, and install

new equipment and methods.  Once the new technology is installed,

the firm must learn how to best exploit it given the demand for its

products, input prices, and the existing complementary technology.

This learning process often takes considerable time.  

In most new installations, there is often a start-up process

during which the components of the new capital inputs are tested,

the labor force is trained and gains experience, and the "bugs" are

worked out of the system.  Finally, the newly gained knowledge

diffuses through individual establishments and the whole firm.

Pilkington (1969) gives ample discourse on this process of learning

in the flat glass industry which is the case studied here.

We are interested in breaking down technical change into two

parts.  The first part can be considered as movements of the

technological cost frontier--shifts in the possible.  The second

would be the movement of the firm toward the possible or optimal--a

learning process.  We denote shifts in the frontier as the result

of the adoption of a new technology.  We denote movements toward

the new frontier as adaptation.  If we can model this adaptation
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path between frontiers, we may have a better understanding of

changes in productivity growth as a new technology comes into use.1

A question arises:  if the new technology is so much better,

why doesn't the firm instantaneously adapt to the new technology?

The answer must lie in the costs that are associated with changing

the ancillary inputs and training the workers, and the costs that

are associated with gaining knowledge on how to efficiently use the

new technology.  This phenomenon was discussed by Lundberg (1961)

in his observation of productivity increases at the Horndal Iron

Works in Sweden, the so-called "Horndal effect," by Arrow (1962),

in his "learning by doing" concept, and by Johansen (1972) in his

idea of "the technique relation."  While Arrow was primarily

concerned with explaining increases in per capita income and

macroeconomic issues, he cited earlier work which observed "The

role of experience in increasing productivity."  Arrow stated that

"technical change in general can be ascribed to experience..."2

Consider the production function for a plant with a single

input, X, and a single output, Q, operating in period t as

          Q = F (X),                                      (1) 1

or the maximum under the technology F .  In Figure 1, this1

situation is represented by point A on the curve F .             1

Now, with the installation of the new technology, the

production frontier shifts (assuming technical progress) to F  (see2
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Solow [1957]).  We assume that after the firm makes the necessary

changes in its machinery and equipment capital to achieve F , it2

must then learn how to efficiently use the new technology.    The3

graphical depiction is the movement from point A, to point B on F2;

this is labelled an "Adaptation Path."

     The problem of modelling this change has been addressed in

previous studies which have included the time trend to account for

technical change.   Yet, the time trend is probably not a proper4

proxy for technical change.  For one thing, it assumes that

technical change moves smoothly through time and ignores the

learning process that follows a drastic change in the firm's

technology.  It also serves as a proxy for both kinds of technical

change, adoption and adaptation.    Without further technical5

apparatus, the inclusion of the time trend as a technical change

index may also implicitly presume that firms are always at their

long-run cost minimization point, (i.e., always on the frontier.)

Arrow (1962) condemned trend projections (the use of time to model

technical change) as "a confession of ignorance, and, what is worse

from a practical viewpoint -- not a policy variable."6

In the last decade, flexible functional forms such as the

transcendental logarithmic (TL) function have superceded

traditional forms such as the Cobb-Douglas function.  These newer

forms allow for a more general representation of the production

technology and have been extensively used in empirical studies of

production.  Yet these studies have not directly addressed the
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learning process or adaptation path as technologies shift, but have

continued to use the time trend as a proxy for both adoption of and

adaptation to technical change.7

For example, it is common to model the firm's production

function as

         Q(t) = F(X(t), t),                                  (2)

where Q(t) and X(t) again denote output and input flows in time

period t, while F denotes the technology that maps X into Q.

Production studies often incorporate one or more parameters

associated with time to calculate the rate  of technical change,

Jp, that can be expressed as

         Jp  =  M(ln F(@))/ Mt.                                (3)

However, causes of technical change are really quite complex as

Solow (1957) has pointed out.  The change in productivity may be

the result of several phenomena that often occur simultaneously.

These include those elements noted as "slowdowns, speedups (in

production or inputs), improvements in the education of the labor

force"  and quality improvements in any input.  Thus, with the time8

trend used as a technological index, Jp would confound technical

change, economies of scale and the movement toward the efficient

production frontier represented by F.



5

An alternative to the production approach is to deduce

technical change from the firm's dual problem, i.e. the problem of

minimizing costs (Diewert 1980).  Consider the cost function     

          C(Q, P, t) = minimum {P@X: (Q,X) d S }, t

           (4) 

where C denotes total costs, P denotes a vector of input prices,

and S  represents the firm's production possibility set in time t.t

Then the rate of technical change can be defined as 

         J    = -  M(ln C)/Mt. c

                              (5)

Both measures, J  and J , implicitly presume that the firm is alwaysc p

operating on the production or cost frontier and that the time

trend adequately measures shifts in the frontier.

If we recognize that the firm may not always be operating

on the frontier, we must modify the model to incorporate the
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movement of the firm from one frontier to another:  hence J , or Jc p

must be modified.  Further, a proper test of such an adaptation

path ideally requires plant level data for a period in which a

known shift in F from F  to F  takes place.  The recent availability1 2

of such data allows us to address this problem.

Ideally, it would be best to apply a dynamic model in this

study.  However such a model requires time series data for accurate

estimation as it uses distributed lags to identify the accelerator

coefficient (the rate at which output affects changes in the

quasi-fixed input.)  Also time-series analysis is needed to

formulate price and output expectations which are in turn arguments

in the equations to be estimated.   Unfortunately, our data covers9

only a 10 year period that is too short of a time span to fully

exploit a dynamic model.

Nevertheless, there is an important feature of our data that

should be emphasized.  We use microdata at the establishment level

extracted from the Census Bureau's Longitudinal Research Database

(LRD).  These microdata are more suitable than aggregate data for

testing hypotheses concerning the production structure and

technology of the firm.  This is because establishment data would

accurately reflect economic activities of individual establishments

where production is actually performed.  In contrast, aggregate

data represent industry totals and therefore would yield

aggregation bias in the estimates for production models.  The
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aggregation bias issue is well known and has been discussed in the

literature.  

For example, Solow (1987) convincingly argued that

"estimates of factor substitutability based on aggregate data are

misleading because they capture more than simply technological

substitution.  Factor substitution is a microeconomic phenomenon,

and is best examined by looking at microdata" (page 612).  

    In this paper, we suggest a different approach to allow us

to utilize our data set and overcome some of its limitations.  We

employ a simple comparative static equilibrium model and fit it to

pooled cross-section time-series data.  As mentioned earlier,

because our time span includes only 10 years, distributed lags and

time-series analysis are difficult if not virtually precluded.

Therefore, instead of modelling the adjustment process, we employ

a learning curve to model an adaptation path.  We presume that the

firm has made its choice of optimal capital (quasi-fixed) stock.

What we model is how the firm learns to use the new capital via

what we call the adaptation path.

In what follows, we develop two models of the firm, with

competing proxies for describing the adaptation path.  We estimate

the models using plant level data and report the results.  Finally,

we use the estimated models to generate alternative measures of

total factor productivity and compare them.  

2. The Model
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The plant production function in period t is assumed as  

   Q(t) # F [K(t), L(t), E(t), OF(t), M(t): J(t)].         1

(6) 

Here, Q denotes a flow of output, whereas K, L, E, OF, and M

respectively denote the service flows from capital stock,

production labor, electricity, other fuels, and intermediate

materials.   If Q(t) = F (@), then output is optimal under the given10 1

technology, F .  If Q(t) < F (@), then output is less than that1 1

obtainable under the existing technology.  The symbol J denotes the

level of technical competence that the plant has in exploiting the

technology under which it operates, the 1-th technology.

At any given level of output, the dual problem is to

minimize costs, C, such that

 C(Q(t), P(t), J) = minimum {P(t)@X(t): (Q(t), X(t)) d S }. 1

(7)

Here, P is a vector of input prices, X is a vector of inputs, and

S  is the production possibility set.  1

We denote shifts in the technical frontier by allowing F  to1

move, i.e., 1 = 1, 2.  We posit two measures of J below and test

them using plant level data.  Such a test requires a specific
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functional form for the cost function.  We elected to use the

transcendental logarithmic (TL) cost function and assume that it is

a precise representation of the firm's costs.  Using lower case

letters to denote the natural logarithm, the TL cost function is

written as

C  = "  + E  "  p  + (1/2) E  E  ß  p  p1 1o i 1i i i j 1ij i j

   + E  "  p  q + "  q + E  "  p  Ji 1iq i 1q i 1iJ i

   + "  q J + (1/2) "  q  + "  J + 1/2 "  J  ,      (8)1qJ 1qq 1J 1JJ
2 2

i, j = K, L, E, OF, M and 1 = 1, 2.   Where, the "'s and ß's are

coefficients and the p's denote natural logarithms of the input

prices.  Imposing symmetry and linear homogeneity in factor prices

as the maintained hypothesis, implies that

    ß  = ß , E  "  = 1, E "  = 0, k = q, J, and E ß  = 0, 1ij 1ij i 1i i 1ik i 1ij

  

where i, j = K, L, E, OF, M, for 1 = 1, 2.

Factor share equations are derived in the usual manner via

Shephard's Lemma.  Thus, factor shares are 

S  = "  + E  ß  p  + " q + "  J,          (9)1i 1i j 1ij j 1iJ 1iJ
  

where (S ) =  C / p , and i,j = K, L, E, OF, M and 1 = 1, 2.     1i 1 i
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Note that the difference between our model and those of

previous studies is in the concept of J as something different than

the usual shift-through-time concept of the production function,

and allowing 1 to take 2 values.  We thus must deal with the

problem of modelling the adaptation path and the shift of the

frontier.  We take up the path problem first.

For comparison, we specified the models incorporating two

different measures of the time path:  (i) a learning process

approximated by an inverse circular function designated J , and0

(ii) a linear function designated J , the traditional proxy for the1

technical level.  The inverse circular function used is 

J  = arctan(t-D), 0 < D # 10                          (10)0

The linear function is 

J  = t.                                               (11)1

In all cases t denotes time and is set equal to 1,2,..., 10.  11

Equation (10) allows J to take the traditional form of a learning

curve, a distended S-shaped form with asymptotes of -B/2 and B/2.

The value of D allows for variation in the inflection point, the

point of fastest approach to the production frontier.

3. Data
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Data for an industry where a shift in technology has

occurred are required to test our model.  The flat glass industry

experienced a technical revolution in the late 1960s and early

1970s when the Pilkington float glass process was commercialized.12

Therefore we used panel data at the plant level for this industry

covering the period 1972-1981.  The details on the data

construction are discussed in the appendix.

4. The Estimates

Equations (8) and (9) were estimated under the previously

discussed specifications of J, the adaptation path proxy, and 1,

the frontier shift proxy.   The frontier shift proxy was applied13

on a plant by plant basis.  We first determined the year when each

plant incorporated the Pilkington process. We then assigned 1 = 0

for prior years when the plant had a stable process and 1 = 1 for

the year of the technology shift and afterwards.  We estimated the

cost and share equations adjusted for the first-order

autocorrelation.   Initial work involved investigating the three14

variants of the adaptation path.    The path denoted J  is15
1

straightforward.  The optimal path for J  was J  = arctan(t-5.05).0 0

Equations (8) and (9) were then estimated using the switching

values of 1 versus a naive model in which 1 is set equal to zero.

Because we had only 150 observations (135 after allowing for first

order serial correlation) while there are 33 parameters being

estimated, we allowed 1 to vary (take values 0, 1) only in the
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capital share equation and cost function; that is we used a

switching dummy variable for " , " , and for " , and thus brought10 1k 1KK

the total number of parameters to 34.  A likelihood ratio test

showed that the switching dummy was statistically significant in

both models with J  and J  (See Table A.2).0 1
16

     The results in Table 1 suggest that the learning curve, J   =0

arctan     (t-5.05), is a better technological index than the

linear time trend, J  = t.  The learning curve results in a1

statistically significant estimate of "  with the expected negativeJ

sign for technical progress.  That is, ceteris paribus, costs

decrease with technical progress.  In contrast, the traditional

linear time trend yields an unexpected statistically significant

positive estimate for " , contradicting economic theory.  We note,J

however, that the two models perform equally well on the basis of

the log of the likelihood function, the sums of squared residuals

and the Durbin-Watson statistics.   Also, both models satisfy the17

concavity condition of the cost function at approximately ninety

percent of the data points.

The detailed parameter estimates for the two models are

reported in Table 2.  While both models yield similar estimates for

the first and second order coefficients associated with output and

with input prices, they give significantly different estimates for

the coefficients associated with the technical progress variable.

Most notably, the learning curve model yields the estimates for "J

that are more consistent with economic theory than those obtained
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from the traditional linear time trend model, as already mentioned.

Also, it is important to note that this model gives the estimated

biased technical change parameters, " , that have exactly the sameiJ

signs with those found by Jorgenson (1984) for the Stone, Clay, and

Glass (2-digit) industry group.  

The Allen-Uzawa elasticities of substitution and the price

elasticities of demand for factor inputs are reported in Tables 3

and 4.  In general, the elasticities are small, implying a

semi-fixed technology except for those associated with intermediate

materials inputs.  All the own elasticities have the correct

n e g a t i v e

s i g n .

 18

Most strikingly, except for the elasticity of substitution

between electricity and fuels in the J  model, all point estimates0

of the cross-elasticities of substitution are positive, indicating

that most inputs are substitutes in the long-run even though they

could be complements in the short-run.  These results are important

and consistent with the literature on the substitutability among

the conventional inputs in the production process.  We emphasize

the importance of this finding especially because of the well-known

controversy surrounding the energy-capital complementary issue
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[e.g., Berndt-Wood (1975, 1979) and Griffin and Gregory (1976)]

that has not been quite settled by aggregate studies.  In this

regard, our results, based on micro-data, provide an additional

piece of evidence regarding the issue of energy-capital

complementarity.19

5. Resulting Estimates of Productivity   

We used the measure suggested by Ohata (1974) and employed

by Berndt (1980), to analyze total factor productivity (TFP) in the

flat glass industry.   Here, under the proper assumptions regarding20

duality, curvature, and markets, [see Berndt (1980)], it can be

shown that 

       TFP = [1/( lnC/ lnQ)]@[- lnC/ J].                      (12)

     We calculated TFP using the estimated models incorporating J0

and J  and report them in Table 5.   The mean TFP plus or minus one1
21

standard deviation for J  is -1.242 to -.420, whereas that for J1 0

is -.447 to +.121.

When technical progress is specified as J , the calculated0

TFP for all 15 establishments is negative (i.e., there are losses

in productivity) in the earlier years of the sample period;

however, they become positive starting in 1977 and are all positive

by 1981.  This turn-around in TFP is consistent with the adaptation

process postulated above.  In contrast, with the conventional
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specification of technical change, J , TFP remains negative for all1

establishments for the entire period.  Thus, the two measures of

adaptation to the new production process yield substantially

different indexes of TFP and consequently lead to different

economic inferences.  

6. Conclusion

We have proposed a model of the firm's adaptation to new

technology that broadly follows the suggestions of Arrow (1962) and

the standard learning curve literature.  The model is applied to

panel data at the establishment level for the flat glass industry.

It is found to be better than the conventional model of linear

technical change in terms of the expected signs on the technical

progress coefficients, and its ability to generate meaningful

patterns in total factor productivity growth.  We caution the

reader that we have so far demonstrated these results only for this

particular data and model and that they are expected to be limited

to those cases in which firms must learn adaptively after a large

technical change has taken place.  Future work should also address

the issue of integrating the paradigm offered here with the

adjustment cost literature, tying the model more formally to that

of Arrow's work, and estimating the costs of learning that

determine the adaptation process.  
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Table 1.  A Comparison of Models of the Adaptation Path

                                                                            
                                                                       
OVERALL
STATISTICS                J  = arctan(t-5.05)             J  = t  0 1

                                                                            
                           
Log of Likelihood               1571.58                  1570.57

Sum of Sq. Residuals

         C                         2.303                    2.374
         K                          .394                     .404
         L                          .167                     .169
         E                          .002                     .002
         F                          .032                     .030

Durbin-Watson Statistic

         C                         1.56                     1.59
         K                         1.51                     1.45
         L                         2.29                     2.27
         E                         1.64                     1.60
         F                         1.73                     1.72

Number of Failures of
Concavity                            13                       14

Estimated coefficient
on "                               -.463                     .670J
    
(Standard Error)                   (.222)                   (.312)

Estimated Coefficient
on "                              -.095                    -.059JJ
   
(Standard Error)                   (.048)                   (.024)
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 Table 2.  Estimated Parameters of TL Models Under J  and Jo 1

                    (Standard Errors in Parentheses)

                                                                             

Parameter                 J  = arctan(t-5.05)                J  = t0 1

                                                                             

   "                                12.785                    7. 26   0
a

                                    (1.617)                  (2.559)

   D                                  .905                     .887c
a a

                                     (.019)                   (.019)

   "                                 -.911                   -1.231  q
a a

                                     (.310)                   (.374)

   "                                 .068                     .096qq
b a

                                     (.031)                   (.035)

   "                                 1.331                    1.333K
a a

                                     (.136)                   (.148)

   "                                 -.119                     .002L

                                     (.112)                   (.129)

   "                                  .068                     .006E
a

                                     (.018)                   (.036)
                                        
   "                                  .068                    -.066F

                                     (.075)                   (.091)
                                                                  
   ß                                -.015                    -.016KK

                                     (.009)                   (.010)

   ß                                 .037                     .033LL
c c

                                     (.018)                   (.018)

   ß                                 .003                     .003EE
a a

                                     (.001)                   (.001)

   ß                                 .010                     .018FF
b

                                     (.008)                   (.008)

   ß                                 .007                     .007KL

                                     (.006)                   (.006)

   ß                                 .001                     .0004KE

                                     (.001)                   (.0006)

   ß                                 .001                    -.0007KF

                                     (.003)                   (.0028)

   ß                                 .001                    -.00001LE

                                     (.002)                   (.0019)
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Table 2 (cont'd)
                                                                             

Parameter                 J  = arctan (t-5.05)               J  = t0 1

                                                                             

   ß                                -.006     -.008LF

                                     (.007)     (.007)

   ß                                -.002     -.001EF

                                     (.002)     (.002)

   "                                -.143                -.141Kq
a a

                                     (.012)     (.012)

   "                                 .068                 .061Lq
a a

                                     (.010)     (.009)  

   "                                 .001                 .001Eq

                                     (.001)     (.001)

   "                                 .006                 .002Fq

                                     (.004)     (.004)

   "                                 -.463                 .670J
b b

                                     (.223)     (.312)  

   "                                -.095     -.059JJ
c b

                                     (.048)     (.024)

   "                                -.011                 .001KJ
                                     (.013)     (.007)

   "                                -.029     -.013LJ
a b

                                     (.009)     (.005)

   "                                -.001                 .002EJ
                                     (.001)     (.001)
   
   "                                 .004                 .011FJ

b

                                     (.005)     (.004)

   "                                 .043                 .009qJ
b

                                     (.020)     (.009)  

   p                                  .952                 .938s
a a

                                     (.010)     (.013)

Switching Dummy                       .068                 .096  a a

                                     (.021)     (.033)

                                                                            

a Denotes statistically significant at the 99% confidence level, (t=2.756)
b at the 95% confidence level, (t=2.045) and
c at the 90% confidence level, (t=1.699).
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Table 3.  Estimated Allen-Uzawa Partial Elasticities

                                                                              

   F                       J  = arctan (t-5.05)            J  = t0 1

                                                                                  
                                                                 

   KK                               -.240                       -.241

   KL                                .058                        .057

   KE                                .0004                       .0004

   KOF                               .005                        .005

   KM                                .075                        .077

   LL                               -.129                       -.133

   LE                                .0004                       .0004

   LOF                               .003                        .003

   LM                                .024                        .032

   EE                               -.014                       -.014

   EOF                              -.002                        .00007

   EM                                .017                        .038

   OFOF                             -.050                       -.042

   OFM                               .056                        .034

   MM                              -2.646                      -2.792

                                                                               
Note:  For standard errors of the elasticities, see endnote 18.
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  Table 4.  Estimated Price Elasticities

                                                                       
                                                                            

                           J  = arctan (t-5.05)              J  = t0 1

                                                                            
                                         
   KK                               -.1109                 -.1112
   KL                                .0157                  .0154
   KE                                small                  small        
   KOF                               .0005                  .0005
   KM                                .0234                  .0239
   LK                                .0216                  .0215
   LL                               -.0310                 -.0316
   LE                                small                  small
   LOF                               .0003                  .0003
   LM                                .0092                  .0112
   EK                                .0002                  .0001
   EL                                .0001                  .0001
   EE                               -.0003                 -.0003
   EOF                              -small                  .0001 
   EM                                .0069                  .0128
   OFK                               .0020                  .0019
   OFL                               .0007                  .0006
   OFE                              -small                  small
   OFOF                             -.0040                 -.0036
   OFM                               .0181                  .0119
   MK                                .0270                  .0277
   ML                                .0070                  .0085
   ME                                .0006                  .0009
   MOF                               .0046                  .0034
   MM                               -.5738                 -.6003

                                                                             

Note:  For standard errors, see endnote 18.
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 Table 5.  Total Factor Productivity (TFP)

                                                                            

                            J  = arctan(t-5.05)               J  = t0 1

                                                                            

Mean TFP                            -.163                   -.831

Std. Dev.                            .284                    .411

Range Minimum                       -.710                  -2.388
     
      Maximum                        .745                   -.267

Pattern of
Signs on
Obs. No.  Year              Negative  Positive          Negative Positive
                                     
   2      1973 15 -0-               15 -0-
   3      1974 15 -0-               15 -0-
   4      1975 15 -0-               15 -0-
   5      1976 15 -0-               15 -0-
   6      1977 12  3                15 -0-
   7      1978  8  7                15 -0-
   8      1979  6  9                15 -0-
   9      1980  2 13                15 -0-
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  10      1981 -0- 15                15 -0-
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Table A.1  Log Likelihood Values for Varying Specification
 of the Adaptation Path

                                                                              
                                                                              
                                                                              
                       J  = arctan (t-D)0

          D                                       Log of Likelihood         
 

                                                                             

        3.500         1413.95
        4.500         1421.93
        5.000         1423.96
        5.025         1423.97
        5.050         1423.97
        5.075         1423.97
        5.100         1423.97
        5.200         1423.94
        5.300         1423.90
        5.400         1423.87
        5.500         1423.84
        5.600         1423.79
        5.700         1423.69
        5.800         1423.52
        6.500         1420.77
        7.500         1418.81
                                                                             

Note:  These first tests were made using an earlier variant of 
equations (8) and (9).
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Table A.2  Log Likelihood Ratio Test for Switching Dummy Variables
(H : "  = "  = "  = 0)0 1M 1K 1KK

                                                                              
Models                           Test Statistics

                         L=2(U-C)             Accept(A)/Reject(R)a b

                                                                             

Model I (with J  = t)                   14.96                 R1

Model II (with J  = arctan(t-5.05)      13.58                 Ro

                                                                             

The L-statistic is defined as two times the difference of the logs of thea

likelihood functions of the unconstrained model (U) and the constrained model (C)
in which " , "  and "  are set equal to zero.1M 1K 1KK

The null hypothesis (H ) is accepted (A) or rejected (R) at the five percentb
0

level.  The critical value of  (n=135, k=3) equals 4.61, where n is the number2

of observations and k is the number of parameter restrictions.
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DATA APPENDIX

    The data employed in this study were extracted from the Census

Bureau's Longitudinal Research Database (LRD).  The LRD contains

data taken from the Census Bureau's Annual Survey of Manufacturers

(ASM) and their quinquennial Census of Manufactures (Census) for

over 50,000 establishments in each year (1972-1981).  (For a

complete description of the LRD, see Monahan, 1983 and McGuckin and

Pascoe, 1988.)  An establishment is "defined as a single plant or

factory in which manufacturing operations are performed . . . (and

includes all activities) manufacturing, fabricating, processing,

and assembling . . . conducted within the establishment."

(Monahan, 1983.)  

    A restriction imposed by the nature of the data is that the

Census Bureau collects accounting information, or total dollars,

for a specific variable.  For example, the total dollars spent on

intermediate materials are collected; the prices, however, are not

always collected.  Quantities must often be imputed from price

data, but this is impeded because of the sparse nature of the price

data that are reported.

    The industry under study is the flat glass industry (SIC 3211).

The extract used contains data for 15 separate establishments

covering the period 1972-1981.  There were 32 establishments that

produced flat glass products in 1972, 62 in 1977, and 69 in 1982

respectively.  The 15 establishments in our sample accounted for

over 70% of total shipments on average for this time period.
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    Initial work with the complete data set extract involved

normalization and plotting to discern outliers.  When extreme

outliers (greater than 3 standard deviations from the mean of the

series in question) became apparent, the particular observation was

checked (often back to the original form filled out by the

responding establishment).  After the editing step, it was apparent

that the resulting data is still replete with noise.  This arises

from occasional legitimate extreme values, intertemporal

discontinuities, missing or imputed observations, and most probably

from the data reporting and recording process. Thus, a dummy

variable was used to accommodate the noise when it was obvious.

There were 4 such dummies.  The specific variables are discussed

below.

    Recall the general underlying production function that is

assumed is

          Q = Q(K, L, E, OF, M; J),                         (A.1)

 

where Q denotes a flow of output, K, L, E, OF, and M respectively

denote a capital service flow, labor, electricity, other fuels, and

intermediate materials; and where J is a technical change index.

Equation (A.1) holds for each year (t) and establishment (j) but

these subscripts are noted below only where necessary for clarity.
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    Output is the deflated sum of the total value of shipments and

the net changes in finished goods and in work-in-process

inventories during the appropriate calendar year.  The deflator is

the Producers Price Index (PPI) for Glass Products, 1972 = 100

provided by the Bureau of Labor Statistics.  All data on shipments

and inventories are available in the LED for each of the

establishments with two exceptions.  First, for an establishment

that started operations in 1972, its initial finished goods and

work-in-process inventories were not reported and thus were

presumed to be zero.  The second, for an establishment that

discontinued reporting work-in-process inventories during part of

the observation period, it was assumed that this inventory value

was subsumed in some other reported inventory asset category, and

therefore no adjustment was made.

    The flow of capital services was assumed to be proportionate to

the depreciated stock of machinery and equipment.  The construction

of a capital stock series for each establishment was complex,

because the Census Bureau collected only part of the information

needed for the total time period covered, and does not collect some

of the required information at all.  The key problem lies in the

initial stock of capital assets (structures plus machinery and

equipment).  The ASM and the Census ask the respondent to provide

data on the gross value of structures and of machinery and

equipment on the establishment's books for a given year.  Data that

attempt to recognize the economic worth of the capital assets, such
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as depreciated assets, are not collected.  The ASM reports data on

annual depreciation, only since 1977 (similarly for capital

retirements).  Further, the ASM commenced in 1949, were as some

flat glass plant structures date from the late 1800s.  Therefore,

a perpetual inventory method for the total capital assets of

structures, machinery and equipment could not be constructed by

working forward from the initial year of the plant's operation.

What was done is to rely on the technical breakthrough, the

Pilkington process, experienced by the flat glass producers in the

late 1960s (See Pilkington [1969].  This innovation led all flat

glass producers to change their equipment and machinery including

the melting furnace forward along the production line to just short

of the warehousing operation.  In the U.S., most of the changes

occurred in the late 1960s and early 1970s, roughly coincident with

the start of the observations in the LED file.  This allowed a

capital stock series for machinery and equipment to be constructed.

Yet, since most of the establishments were housed in structures

predating 1970, a related capital stock for structures could not be

achieved.  The series was constructed by the perpetual inventory

method using the reported beginning assets for machinery and

equipment (MAB) in 1972.  The relevant formula for the dollar value

of capital machinery and equipment is,     

         K J = MAB +  E    [(1/2).(NM  + UM  - MRT )              ^ J
i i i

      
                     i=1972                           
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             - * K  + (MR/QK) ]  .            (A.2)^
i-1 i

Here NM and UM denote new and used machinery and equipment

purchases respectively; MRT and * denote machinery and equipment

retirements and the depreciation rate; MR represents machinery and

equipment rental costs; and QK denotes the user cost of capital.

Note that the last term in equation (A.2) is the capitalized value

of machinery and equipment rentals.  In some cases this was a

significant amount of the total capital stock in machinery and

equipment (e.g., 6% in one establishment's case).

    As mentioned above, retirement data are only available from

1977 forward.  Hence, we used the depreciation rate developed by

Jorgenson and Stephenson (1967) of 7.53% per year, and retirements

were taken at zero for the 1972-76 period.  An alternative approach

would be to use newer depreciation rates suggested by more recent

work.  We chose the Jorgenson-Stephenson rate for this study and

hope to explore the impact of alternative depreciation rates such

as the "best geometric average rate" by asset class suggested by

Hulten and Wykoff (1981) in future work.

    The cost of capital services, QK, was calculated by a

Jorgensonian expression as applied by Mohr (1986).

QK = [(1 - T.Z-K)/(1-T)].[PA .r + PA .* - (PA  - PA )]  t-1 t t t-1

(A.3)



32

Here, PA is the SIC 321 price deflator for capital goods taken from

a data file of the Bureau of Industrial Economics (BIE), available

at the Center for Economic Studies.  The rates of return are

approximated by the interest rates obtained for each firm from

Moodys (see Kokkelenberg and Hall [1985]).  The corporate tax rate

and the investment tax credit are denoted by T and K respectively,

while Z denotes the present value of the tax effects of accelerated

depreciation.  These data were taken from a data file maintained at

the Center for Economic Studies.  Finally, the total cost of

capital services, SSK, was calculated by multiplying deflated

capital stock, K, by QK, for each establishment in each time

period.

    The labor input, L, was constrained to concern production

workers only.  The inclusion of non-production workers was dropped

from the model, because of obvious accounting artifacts.  The

number of non-production workers reported in the ASM fluctuated

widely by establishment, even when normalized by output or

production man hours.  It is likely that different firms place

non-production worker on different payrolls (e.g. plant versus home

office).  The total production labor cost, SSL, for each

establishment in each year is given by

         SSL = [WW + LC @ (WW/(OW + WW))]            (A.4)
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Here WW is the total salaries and wages in current dollars, LC is

the total supplemental labor costs in current dollars (which

accrued to both production workers and non-production workers), and

OW denotes non-production workers salaries and wages.

    The Census Bureau collected the cost of purchased electricity,

EE.  Cost of other fuels is also complete and similarly treated to

obtain, SSOF, the total fuel cost.

    The total cost of materials was calculated by

         SSM = (CP + CR + CW),  (A.5)        

where CP denotes the costs of materials and parts purchased during

the relevant time period, CR denotes the costs of resales, and CW

denotes the costs of contract work.  As part of this study, field

visits were made to several glass establishments.  It was noted

that they frequently engaged in warehousing and resale operations

of significant magnitude to enable them to meet their customer's

demands.  In this data set, the cost of resale goods varied from

zero to over $25 million, with an average value of $2 million or

12.5% of CP.

    The estimation of a translog cost function and its elasticities

requires factor shares as dependent variables which were calculated

in the usual way where total cost is the sum of SSK + SSL + SSE +

SSOF + SSM.  Prices of the inputs are required as exogenous

variables in estimating a translog cost function and these proved

to be difficult to obtain for all inputs.  The service price of
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capital is discussed above.  The price of labor was generated by

dividing SSL by the total production worker man hours which was

collected by the Census Bureau in the ASM.  Similarly, a price of

electricity was generated by dividing the total cost of purchased

electricity by the kilowatt hours purchased, both variables

collected by the Bureau for the whole sample.

    During the sample period, the establishments used a variety of

fuels with the major three being natural gas, residual fuel oil,

and distillate fuel oil.  Over time, as fuel oil prices rose more

rapidly, there was a shift out of fuel oil to natural gas for the

sample as a whole.  Although this varied from establishment to

establishment, it is an apparent result of long-term fuel

contracts.  Thus, the average price of fuel, POF, was calculated as

         POF = [FCR/(FQR @ 6.285) + FCN/(FQN @ 1.020) 

              + FCD/(FQD @ 5.824)]/[FCR + FCN + FCD],        (A.6)

   

where FCR, FCN, FCD denote residual fuel oil, natural gas and

distillate fuel oil total costs respectively.  FQR, FQN, and FQD

denote the respective quantities (in 42 gallon barrels for the oil

and 1000's of cubic feet for the gas).  The factors 6.285, 1.020,

and 5.824 are the respective millions of British Thermal Units per

42 gallon barrel or 1000 cubic feet.  Equation (A.6) results in a

Btu weighted fuel cost.  These data exist for each establishment

for 1974-1981.  An appropriately weighted average of the Producers
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Price Index for fuels and natural gas, benchmarked to the 1974 btu

weighted price for each establishment, was calculated for the two

years, 1972 and 1973.

    The price of materials was determined for the two Census years,

1972 and 1977, by calculating a delivered price for glass sand and

for soda ash for each establishment.  Quantity and cost data for a

variety of materials are gathered in each Census year but not in

the ASM years.  The two inputs, glass sand and soda ash account for

50% or more of the intermediate materials costs for each

establishment and by far the largest tonnage.  Other materials

which account for a large share of total costs are packaging

products and inorganic minerals which are added to the materials

charged to the furnace (e.g. lead).  However, the details for the

intermediate materials other than glass sand and soda ash were

sparse.  The price of materials is then calculated by

 

  PM = [CGS @ (CGS/QGS + CSA @ (CSA/QSA)]/[CGS + CSA],     (A.7)  

where CGS denotes the total cost of glass sand delivered, QGS the

quantity of glass sand, CSA the total delivered cost of soda ash,

and QSA the quantity of soda ash.  This weighted price, PM, was

calculated for 1972 and 1976 to establish benchmarks.  The 1972

price was then used together with the PPI for intermediate

materials in manufacturing (1967=100) to generate 1972, 1973, and

1974 prices for each establishment.  Prices for 1975 through 1981
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were generated by the 1977 Census year benchmark weighted price and

the PPI for intermediate materials.   
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1. This adaptation cost is not to be confused with the Eisner and
Strotz (1963) concept of adjustment cost.  The latter is a cost
accompanying the installation of new quasi-fixed inputs.  

2. Arrow, (1962), pg. 156.

3. Theoretically, the stock of capital associated with the new
technology may also differ from that of the old technology in
another important aspect, that of raw material and
work-in-process inventories.  In this study, we lack the
appropriate data to determine the exact differences in the raw
and intermediate material inputs under the old and the new
technologies.  A perusal of the technical literature suggests
that there are no substantive differences in the raw materials
required in either process (c.f. the Encyclopedia of Chemical
Technology [1977]).  Therefore we adopt the usual practice of
using the stock of capital and the output of the final product to
proxy for this omission.  We thank an anonymous referee for
pointing out this assumption. 

4. See, e.g., Binswanger (1974) or Helliwell (1976).

5. See Ross (1986).

6. Arrow, op. cit., pg. 155.

7. The possible exception is that of Brown and Christensen (1981)
who developed a flexible functional paradigm which considered
short-run costs only, holding the technology as represented by
the quasi-fixed inputs constant.  The next step was to estimate a
series of such short-run cost models and then estimate the
long-run model.  This has been done by Morrison (1985) among
others.  Yet the problem of modelling the learning or adaptation
path is still not directly addressed by this approach.

8. Solow (1957), page 312.

9. See Bischoff (1971) or Kokkelenberg and Bischoff (1986) for
examples.

10. Two important but omitted inputs are non-production workers
and certain intermediate material inputs.  Both are omitted
because usable data are lacking.  We recognize that in the
absence of explicit treatment of these omitted inputs and of non-
separability, there are biases in the parameter estimates.  

ENDNOTES
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11. Note that while equation (11) is traditional, it would allow
costs to decrease without limit.  This failing is seldom
mentioned in the literature.  In the short-run this may not
appear to be a problem, but only equation (10) is consistent with
the idea of approaching a frontier.  We also investigated a model
using J  = t , 0 < a < 1.  This exponential model, which allows,

a

for a monotonic but decreasing impact of J, proved to be
inferior to either J  or J  and was dropped from further work.0 e

12. Pilkington (1969).  See also The Encyclopedia of Chemical
Technology (1977) volume 7, which includes a large number of
references on the float glass process.

13. Equations (8) and (9) were estimated using the iterative
Zellner (1962) seemingly unrelated nonlinear estimation procedure
in T.S.P. 4.0.  This estimation procedure is asymptotically
equivalent to the full information maximum likelihood method. 
The regressions were carried out on the Hewlett Packard 9000 at
the Center for Economic Studies, U.S. Bureau of the Census.

14. A more complex lagged structure may be more appropriate
because the phenomenon being considered has an underlying dynamic
property.  A dynamic model may help to distinguish between short
and long run phenomena.  We were constrained from incorporating
longer lags, however, by degrees of freedom considerations.  

15. See Table A.1 for the results of an initial screening of J . 0

In addition a number of rational functions were tried; for
example J = t/(t +t+1) or J = t/(t+1) or J = (t+1)/t.  While all2

of these showed some slight improvements over J = t in terms of
coefficients that were statistically significant, they failed to
improve the overall fit of the system of equations.  

16. We attempted to include the switching dummy variable in each
share equation for each parameter, but the added cross equation
constraints were beyond the capabilities of our software. 
Because the new technology is associated with capital stock, we
then limited the switching dummy to the cost intercept, " , the10
capital intercept "  and the coefficient, " .  Note that we are1K 1KK
making an assumption about the switching dummy.  Specifically we
are assuming that this dummy is a proxy for shifts in technology
rather than the effects of the adaptation to the existing
technology, or a proxy for other changes that may be occurring in
the industry.

17. The Durbin-Watson statistics are all such that the hypothesis
of first order serial correlation among the residuals after the
correction must be either indeterminate or rejected.  The problem
of the non-normality of this data set is evidenced by a Lagrange
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multiplier test (Jarque and Bera, 1980).  This, of course, should
be borne in mind when evaluating the overall results of those
statistics that presume an underlying normally distributed
disturbance term.  The number of sign changes after the inclusion
of a first order auto-regressive correction showed no serial
correlation as did a regression of residuals on lagged residuals. 
A Park test for heteroscedasticity (Park, 1967) and a plot of the
squared residuals versus scaling variables showed no signs of
heteroscedasticity for any model of J.

18. These elasticities were calculated using the formulas given
below.

   F  = (ß  + S  - S )/S^
ii ii i i i

^ ^ 2 2^ ^

   F  = (ß  + S S )/S S^
ij ij i j i j

^ ^ ^ ^ ^

    = S @F^
ij j ij

^ ^

    = S @F^
ii i ii

^ ^

 
where i,j = K, L, E, OF, M.  Calculations were made at each
observation and Tables 3 and 4 report mean values of the
elasticities.  We do not report the standard errors of the
elasticities because proper estimates for such statistics are
difficult to obtain.  In fact, we can calculate standard errors
for these elasticities over the sample, but then they only show
the variance in the factor shares, the S .  They can also be^

i

calculated at a point and the mean fitted or actual factor share
used together with the variance on the ß .  Anderson and^

ij

Thursby (1986) investigated this issue and concluded that "a
trade off between the use of highly-disaggregate data and the
width of the confidence intervals surrounding elasticity
estimates [exists]" (page 656).   We calculated the standard
error over the sample and found that the own Allen-Uzawa
elasticities are more than two standard errors different from
zero.  However, all of the cross elasticities are not.  We used
the Anderson-Thursby preferred method in a further test and found
the same results with 95% confidence, but results consistent in
regards to sign for cross elasticities with 80% confidence.

19. As mentioned earlier, J. Solow (1987) argued convincingly
that it is impossible to resolve the controversy surrounding the
energy-capital complementarity without the use of microdata.  

20. The advantage of this measure of TFP is that it does not
require neutrality of technical change.  Equally important, it is
better than the Gollop-Jorgenson approach because it does not
impose the restriction of constant returns to scale. 
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Kokkelenberg (1987) showed that this restriction does not hold
for this data.

21. Note that an index of total factor productivity in stone,
glass and clay products for the period covered was as follows
(1977=100)

    

1972          

 99.0
    

1973           103.8
    

1974           102.8
    

19
7

5            93.2
    

19
7 6          

 96.3
    

1977           100.0
    

1978           104.8
    

1979           107.0
    

1980           102.0
    

19
8

1            99.5

Source: American Productivity Center (1982) 
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